Term Information

<table>
<thead>
<tr>
<th>Effective Term</th>
<th>Spring 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Value</td>
<td>Spring 2015</td>
</tr>
</tbody>
</table>

Course Change Information

What change is being proposed? (If more than one, what changes are being proposed?)

Update prerequisites to:

- HPNES major prereq EEOB 2520; Exercise Science major prereq PHYSIO 3200 (or 3201 and 3202)

What is the rationale for the proposed change(s)?

Due to changes in two degree programs that utilize KNHES 3414 the prerequisites need to be updated to reflect the different degree tracks that students will follow to enter the course. Additionally, students confuse KNHES 3414 as a general elective, the course change will make it transparent to students that this is a majors only course and not open to general enrollment.

What are the programmatic implications of the proposed change(s)?

(e.g. program requirements to be added or removed, changes to be made in available resources, effect on other programs that use the course)?

Allow for HPNES students to take EEOB 2520 as a prerequisite for this course

Is approval of the request contingent upon the approval of other course or curricular program request? No

Is this a request to withdraw the course? No

General Information

- **Course Bulletin Listing/Subject Area**: Kinesiology: Health & Exercise Science
- **Fiscal Unit/Academic Org**: Department of Human Sciences - D1251
- **College/Academic Group**: Education & Human Ecology
- **Level/Career**: Undergraduate
- **Course Number/Catalog**: 3414
- **Course Title**: Applied Exercise Physiology
- **Transcript Abbreviation**: Applied Ex Phys
- **Course Description**: Examines the primary human physiological systems and their response to acute and chronic exercise stimuli.
- **Semester Credit Hours/Units**: Fixed: 4

Offering Information

- **Length Of Course**: 14 Week
- **Flexibly Scheduled Course**: Never
- **Does any section of this course have a distance education component?**: No
- **Grading Basis**: Letter Grade
- **Repeatable**: No
- **Course Components**: Laboratory, Lecture
- **Grade Roster Component**: Lecture
- **Credit Available by Exam**: No
- **Admission Condition Course**: No
- **Off Campus**: Never
- **Campus of Offering**: Columbus
Prerequisites and Exclusions

Prerequisites/Corequisites
- Prereq: admission to HPNES major and EEOB 2520
- Prereq: admission to Exercise Science major and PHYSIO 3200 (3201 and 3202)

Previous Value
- Prereq: Physio 3101 and 3102; or 3200; or permission of instructor.

Exclusions
- Not open to students with credit for EduPAES 414 or 514.

Cross-Listings

Cross-Listings

Subject/CIP Code

Subject/CIP Code: 31.0505
Subsidy Level: Baccalaureate Course
Intended Rank: Junior, Senior

Requirement/Elective Designation

Required for this unit's degrees, majors, and/or minors

Course Details
Course goals or learning objectives/outcomes

• 1. How carbohydrates and lipids are metabolized in the human body;
• 2. Nutritional strategies for optimal exercise performance;
• 3. The influence of endurance training upon carbohydrate and lipid metabolism;
• 4. Training strategies to optimize aerobic and anaerobic power development;
• 5. Gas exchange in the human body;
• 6. The structure and function of the cardiovascular system and how it is influenced by aerobic exercise training;
• 7. The response of the skeletal muscle system to various resistance training protocols;
• 8. The response of the human body to various environmental stressors;
• 9. The role of the endocrine system in the regulation of metabolism and energy utilization;
• 10. The role of exercise and physical activity as a remedy for obesity and diabetes;
• 11. The influence of exercise and physical activity on the aging process.
• 12. Perform resting and exercise blood pressures;
• 13. Perform a sub-maximal lab and field aerobic exercise tests;
• 14. Perform a VO2max test, anaerobic threshold test, and a lactate threshold test;
• 15. Perform and interpret assessments from an isokinetic dynamometer;
• 16. Review the germane literature for a chosen research question;
• 17. Develop a research purpose and testable hypothesis;
• 18. Collect research data;
• 19. Analyze research data with basic statistics;
• 20. Interpret the results of a research project in the context of a purpose and testable hypothesis;
• 21. Write a research manuscript; and,
• 22. Present research results and conclusions utilizing a Power Point oral presentation.

Previous Value

Describe primary human physiological systems and their response to acute and chronic exercise stimuli

Content Topic List

• How carbohydrates and lipids are metabolized in the human body;
• The influence of endurance training upon carbohydrate and lipid metabolism;
• Training strategies to optimize aerobic and anaerobic power development;
• Gas exchange in the human body
• The structure and function of the cardiovascular system and how it is influenced by aerobic
• Response of the skeletal muscle system to various resistance training protocols;
• Response of the human body to ergogenic aids and their influence on human performance;
• Response of the human body to various environmental stressors;
• Role of the endocrine system in the regulation of metabolism and energy utilization;
• Role of exercise and physical activity as a remedy for obesity and diabetes;
• Influence of exercise and physical activity on the aging process.

Attachments

• 3414 Syllabus Autumn Semester 14.doc
(Syllabus. Owner: Odum, Sarah A.)
<table>
<thead>
<tr>
<th>Status</th>
<th>User(s)</th>
<th>Date/Time</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted</td>
<td>Devor, Steven Thomas</td>
<td>04/24/2015 11:04 AM</td>
<td>Submitted for Approval</td>
</tr>
<tr>
<td>Approved</td>
<td>Folden Jr, H Eugene</td>
<td>04/24/2015 11:12 AM</td>
<td>Unit Approval</td>
</tr>
<tr>
<td>Pending Approval</td>
<td>Odum, Sarah A.</td>
<td>04/24/2015 11:12 AM</td>
<td>College Approval</td>
</tr>
<tr>
<td></td>
<td>Zircher, Andrew Paul</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warnick, Bryan R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Achterberg, Cheryl L.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Ohio State University
Department of Human Sciences - Kinesiology Program

KNHES 3414 – Applied Exercise Physiology
Course Syllabus – Autumn Semester, 2014

Professor: Steven T. Devor, Ph.D., FACSM

Lecture Time: 10:20 a.m. - 11:15 a.m., Monday, Wednesday, and Friday
Lecture Location: McPherson Laboratory, 2190

Dr. Devor Office Hours: PAES Building, room A50 - 688-8436 - devor.3@osu.edu
Monday and Wednesday, 9:00 a.m. - 10:00 a.m.
other times are available by appointment

Graduate Assistants: Jessica Dicke, B.A. - dicke.35@osu.edu
PAES Building, room A12
Richard A. LaFountain, M.S. – lafountain.9@osu.edu
PAES Building, room A12

Laboratory Location: All laboratory sections will be held in PAES Building, rooms A06 and A10.

Prerequisites: PHYSCB 3101 and 3102: Human Physiology I and II, or PHYSCB 3200: Human Physiology

Course Description: This course will examine the primary human physiological systems and their response to acute and chronic exercise stimuli. Physiological topics that will be covered include: 1.) Carbohydrate metabolism; 2.) Lipid metabolism; 3.) Pulmonary physiology; and, 4.) Cardiovascular physiology. In addition, the response of the physiological systems to various environmental situations including heat, cold, altitude, and microgravity will be discussed. Exercise for special populations will also be considered.
Course Objectives: Following the completion of KNHES 3414, students should have the ability to describe (1–11), and correctly (12–22):

1. How carbohydrates and lipids are metabolized in the human body;
2. Nutritional strategies for optimal exercise performance;
3. The influence of endurance training upon carbohydrate and lipid metabolism;
4. Training strategies to optimize aerobic and anaerobic power development;
5. Gas exchange in the human body;
6. The structure and function of the cardiovascular system and how it is influenced by aerobic exercise training;
7. The response of the skeletal muscle system to various resistance training protocols;
8. The response of the human body to various environmental stressors;
9. The role of the endocrine system in the regulation of metabolism and energy utilization;
10. The role of exercise and physical activity as a remedy for obesity and diabetes;
11. The influence of exercise and physical activity on the aging process.
12. Perform resting and exercise blood pressures;
13. Perform a sub-maximal lab and field aerobic exercise tests;
14. Perform a VO2 max test, anaerobic threshold test, and a lactate threshold test;
15. Perform and interpret assessments from an isokinetic dynamometer;
16. Review the germane literature for a chosen research question;
17. Develop a research purpose and testable hypothesis;
18. Collect research data;
19. Analyze research data with basic statistics;
20. Interpret the results of a research project in the context of a purpose and testable hypothesis;
21. Write a research manuscript; and,
22. Present research results and conclusions utilizing a Power Point oral presentation.

Grading - Overall: The overall course grade for KNHES 3414 will be based 70% on the lecture component and 30% on the laboratory component. There will be no “curve” applied to any course grade, and there will be no extra credit points permitted.

Grading - Lecture: Grading of the lecture component of the course will be determined by four (4) hourly examinations and one (1) comprehensive final examination.

Examination #1: 12% of total course grade. This examination will cover material from August 29, 2014 through September 17, 2014.
Examination #2: 12% of total course grade. This examination will cover material from September 22, 2014 through October 8, 2014.
Examination #3: 15% of total course grade. This examination will cover material from August 29, 2014 through October 24, 2014.
Examination #4: 12% of total course grade. This examination will cover material from October 29, 2014 through November 17, 2014.
Final Examination: 19% of total course grade. This examination will be comprehensive and cover material from August 29, 2014 through December 8, 2014.
Examination Format: All lecture examinations will be comprised of multiple-choice questions. The grade distribution will be: 90% - 100% = A; 80% - 89% = B; 70% - 79% = C; 60% - 69% = D; and < 60% = E. Letter grades will be modified by the suffixes plus (+) and minus (−).

Lecture Topic and Reading Schedule:
Note that as we progress through the semester slight revisions may be made to the lecture schedule. If revisions are made, they will be announced at the beginning of the appropriate lecture.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Day</th>
<th>Lecture Topic</th>
<th>Reading Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/27/14</td>
<td>Wednesday</td>
<td>Housekeeping and Introduction of Course</td>
<td>Chapter 1</td>
</tr>
<tr>
<td></td>
<td>8/29/14</td>
<td>Friday</td>
<td>Carbohydrate, Lipids, and Protein Structure</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>2</td>
<td>9/1/14</td>
<td>Monday</td>
<td>Labor Day Holiday – No Classes</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>9/3/14</td>
<td>Wednesday</td>
<td>Carbohydrate, Lipids, and Protein Structure</td>
<td>Chapter 1</td>
</tr>
<tr>
<td></td>
<td>9/5/14</td>
<td>Friday</td>
<td>Nutrition for Exercise</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>3</td>
<td>9/8/14</td>
<td>Monday</td>
<td>Nutrition for Exercise</td>
<td>Chapter 3</td>
</tr>
<tr>
<td></td>
<td>9/10/14</td>
<td>Wednesday</td>
<td>Biochemical Processes</td>
<td>Chapter 5</td>
</tr>
<tr>
<td></td>
<td>9/12/14</td>
<td>Friday</td>
<td>Carbohydrate Metabolism</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>4</td>
<td>9/15/14</td>
<td>Monday</td>
<td>Carbohydrate Metabolism</td>
<td>Chapter 6</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td>Wednesday</td>
<td>Fat Metabolism</td>
<td>Chapter 6</td>
</tr>
<tr>
<td></td>
<td>9/19/14</td>
<td>Friday</td>
<td>Examination #1</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>9/22/14</td>
<td>Monday</td>
<td>Performance Testing Methods</td>
<td>Chapter 11</td>
</tr>
<tr>
<td></td>
<td>9/24/14</td>
<td>Wednesday</td>
<td>Performance Testing Methods</td>
<td>Chapter 11</td>
</tr>
<tr>
<td></td>
<td>9/26/14</td>
<td>Friday</td>
<td>Training Principles and Metabolic Adaptations to Training</td>
<td>Chapter 21, pp 452-460</td>
</tr>
<tr>
<td>6</td>
<td>9/29/14</td>
<td>Monday</td>
<td>Pulmonary Structure and Function</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Day</td>
<td>Lecture Topic</td>
<td>Reading Assignment</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>6</td>
<td>10/1/14</td>
<td>Wednesday</td>
<td>Gas Exchange</td>
<td>Chapter 13</td>
</tr>
<tr>
<td></td>
<td>10/3/14</td>
<td>Friday</td>
<td>Respiration Control</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>7</td>
<td>10/6/14</td>
<td>Monday</td>
<td>Cardiovascular Anatomy</td>
<td>Chapter 15</td>
</tr>
<tr>
<td></td>
<td>10/8/14</td>
<td>Wednesday</td>
<td>Cardiovascular Function During Exercise</td>
<td>Chapter 15</td>
</tr>
<tr>
<td></td>
<td>10/10/14</td>
<td>Friday</td>
<td>Examination #2</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>10/13/14</td>
<td>Monday</td>
<td>Components of Oxygen Consumption at Rest and Exercise</td>
<td>Chapter 17</td>
</tr>
<tr>
<td></td>
<td>10/15/14</td>
<td>Wednesday</td>
<td>Components of Oxygen Consumption at Rest and Exercise</td>
<td>Chapter 17</td>
</tr>
<tr>
<td></td>
<td>10/17/14</td>
<td>Friday</td>
<td>Components of Oxygen Consumption at Rest and Exercise</td>
<td>Chapter 17</td>
</tr>
<tr>
<td>9</td>
<td>10/20/14</td>
<td>Monday</td>
<td>Components of Oxygen Consumption at Rest and Exercise</td>
<td>Chapter 17</td>
</tr>
<tr>
<td></td>
<td>10/22/14</td>
<td>Wednesday</td>
<td>Excess Post Exercise Oxygen Consumption</td>
<td>Chapter 7</td>
</tr>
<tr>
<td></td>
<td>10/24/14</td>
<td>Friday</td>
<td>Excess Post Exercise Oxygen Consumption</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>10</td>
<td>10/27/14</td>
<td>Monday</td>
<td>Examination #3</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>10/29/14</td>
<td>Wednesday</td>
<td>Physiological Responses to Altitude</td>
<td>Chapter 24</td>
</tr>
<tr>
<td></td>
<td>10/31/14</td>
<td>Friday</td>
<td>Physiological Responses to Altitude</td>
<td>Chapter 24</td>
</tr>
<tr>
<td>11</td>
<td>11/3/14</td>
<td>Monday</td>
<td>Countermeasures for the Adaptations to Spaceflight</td>
<td>Chapter 27</td>
</tr>
<tr>
<td></td>
<td>11/5/14</td>
<td>Wednesday</td>
<td>Exercise in the Heat</td>
<td>Chapter 25</td>
</tr>
<tr>
<td></td>
<td>11/7/14</td>
<td>Friday</td>
<td>Exercise in the Heat</td>
<td>Chapter 25</td>
</tr>
<tr>
<td>12</td>
<td>11/10/14</td>
<td>Monday</td>
<td>Exercise in the Cold</td>
<td>Chapter 25</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Day</td>
<td>Lecture Topic</td>
<td>Reading Assignment</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>12</td>
<td>11/12/14</td>
<td>Wednesday</td>
<td>Hormonal Regulation</td>
<td>Chapter 20</td>
</tr>
<tr>
<td></td>
<td>11/14/14</td>
<td>Friday</td>
<td>Hormonal Regulation</td>
<td>Chapter 20</td>
</tr>
<tr>
<td>13</td>
<td>11/17/14</td>
<td>Monday</td>
<td>Hormonal Regulation</td>
<td>Chapter 20</td>
</tr>
<tr>
<td></td>
<td>11/19/14</td>
<td>Wednesday</td>
<td>Examination #4</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>11/21/14</td>
<td>Friday</td>
<td>Energy Expenditure at Rest and Exercise</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>14</td>
<td>11/24/14</td>
<td>Monday</td>
<td>Energy Expenditure at Rest and Exercise</td>
<td>Chapter 9</td>
</tr>
<tr>
<td></td>
<td>11/26/14</td>
<td>Wednesday</td>
<td>Thanksgiving Holiday</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>11/28/14</td>
<td>Friday</td>
<td>Thanksgiving Holiday</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>12/1/14</td>
<td>Monday</td>
<td>Exercise as a Remedy for Obesity and Diabetes</td>
<td>Chapter 30</td>
</tr>
<tr>
<td></td>
<td>12/3/14</td>
<td>Wednesday</td>
<td>Exercise as a Remedy for Obesity and Diabetes</td>
<td>Chapter 30</td>
</tr>
<tr>
<td></td>
<td>12/5/14</td>
<td>Friday</td>
<td>Exercise and the Aging Process</td>
<td>Chapter 31</td>
</tr>
<tr>
<td>16</td>
<td>12/8/14</td>
<td>Monday</td>
<td>Exercise and the Aging Process</td>
<td>Chapter 31</td>
</tr>
<tr>
<td></td>
<td>12/11/14</td>
<td>Thursday</td>
<td>Final Comprehensive Examination</td>
<td>10:00 a.m. – 11:45 a.m.</td>
</tr>
</tbody>
</table>

Grading – Laboratory: Grading of laboratory component of KNHES 3414 will be determined by seven (7) lab reports, two (2) Power Point presentations, and one (1) research manuscript.

Laboratory Reports: Seven (7) total, each worth 2%, for a total of 14% of the overall total course grade.

Laboratory Power Point Presentations: Two (2) total, each worth 4%, for a total of 8% of the overall total course grade.

Laboratory Research Manuscript: Worth 8% of the overall total course grade.
Laboratory Description:

A: To expose the student to laboratory and field testing methods designed for the assessment of human fitness and performance. Labs include assessment of: 1.) Resting and exercise blood pressure; 2.) Isokinetic and dynamic strength; 3.) Predicted and measured VO2max; 4.) Anaerobic threshold and blood lactate; 5.) Anaerobic power; and, 6.) Selected field tests of aerobic capacity.

B: To expose the student to the many processes involved in conducting a research project, the writing of a research manuscript, and presentation of research results. The research manuscript will include the following sections: 1.) Abstract; 2.) Introduction; 3.) Statement of testable hypothesis; 4.) Experimental design and methods; 5.) Data analysis; and, 6.) Results discussion.

Research Manuscript:

Each written manuscript for a lab group must include the following sections: 1.) Abstract (300 word limit); 2.) Introduction, purpose of the experiment, and statement of testable hypothesis (~2 - 3 pages); 3.) Materials and experimental methods including an experimental timeline (~3 pages); 4.) Statistical analysis (~1 paragraph); 5.) Results including necessary figures and tables (~3 - 4 pages); and, 6.) Discussion of the results relative to the hypothesis and similar experiments previously reported in the literature (~4 pages).

Oral Laboratory Manuscript Presentation: During week 5 (research study proposal) and week 13 (final research manuscript), each research team will present their project using Power Point software. The proposal presentation should take no more than 15 minutes and contain a title, introduction, purpose and hypothesis, background, methodology, and expected results. The final presentation must include all components of the written manuscript and last no longer than 30 minutes total, with 10 minutes of the 30 reserved for questions and discussion.

Laboratory Notebook: Each group must keep a laboratory notebook. All information (especially e-mails) exchanged amongst the group must be included in the notebook. Additional entries must include the progress of your group toward the completion of your research project, a detailed list of individual contributions, and a record of problems that occur during the semester relative to the project and their subsequent resolution.

Laboratory Expectation: The 3414 lab requires full participation by all students enrolled. Students are required to wear and bring appropriate clothing and footwear for exercise activities, including but not limited to cycling, treadmill and track running, stepping, and weight lifting. In addition, students are expected to treat all laboratory equipment with high respect and clean and return equipment to its original storage area as directed by the lab instructor.

Laboratory Attendance: Attendance is mandatory. KNHES 3414 labs are a team effort. Each unexcused absence from your weekly lab will result in a 5% reduction of your overall total course grade.
<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Laboratory Activity and Assignment Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/1/14 – 9/5/14</td>
<td>Orientation, how to complete a research literature search, research literature search assignment</td>
</tr>
</tbody>
</table>
| 2 | 9/8/14 – 9/12/14 | Research project: Article presentation and group assignment
Article summary due |
| 3 | 9/15/14 – 9/19/14 | Lab 1: Resting and exercise blood pressure, and how to design a Power Point presentation |
| 4 | 9/22/14 – 9/26/14 | Lab 2: Sub-maximal exercise testing
Lab 1 report due |
| 5 | 9/29/14 – 10/3/14 | Research project: Study proposal
Lab 2 report due, and Power Point presentation of study proposal |
| 6 | 10/6/14 – 10/10/14 | Lab 3: Maximal versus sub-maximal graded exercise testing |
| 7 | 10/13/14 – 10/17/14 | Lab 4: Field assessment
Lab 3 report due, and introduction section and methods section of research manuscript due |
| 8 | 10/20/14 – 10/24/14 | Research project: Data analysis
Lab 4 report due |
| 9 | 10/27/14 – 10/31/14 | Lab 5: VO2max and lactate threshold recovery
Results section of research manuscript due |
| 10 | 11/3/14 – 11/7/14 | Lab 6: Isokinetic dynamometer
Lab 5 report due |
| 11 | 11/10/14 – 11/14/14 | No laboratory scheduled |
| 12 | 11/17/14 – 11/21/14 | Lab 7: Wingate test
Lab 6 report due, and discussion section and conclusion section of research manuscript due |
| 13 | 11/24/14 – 11/28/14 | Thanksgiving Holiday - No laboratory scheduled |
| 14 | 12/1/14 – 12/5/14 | Lab 7 report due, final research manuscript
Power Point presentation, and final research manuscript due |
Academic Misconduct – The Code of Student Conduct (Section 3335-23-04) at The Ohio State University defines academic misconduct as: “Any activity that tends to compromise the academic integrity of the University, or subvert the educational process.” Examples of academic misconduct include (but are not limited to) plagiarism, collusion (unauthorized collaboration), copying the work of another student, and possession of unauthorized materials during an examination. Ignorance of the Code of Student Conduct is never considered an “excuse” for academic misconduct.

If I suspect that a student has committed academic misconduct in this course, I am obligated by University Rules to report my suspicions to the Committee on Academic Misconduct (COAM). If the COAM determines that you have violated the OSU Code of Student Conduct (i.e., committed academic misconduct), the sanctions for the misconduct could include a failing grade in this course and suspension or dismissal from the University. For additional information, see the Code of Student Conduct (http://studentaffairs.osu.edu/info_for_students/csc.asp).

ODS Statement – Any student who feels s/he may need an accommodation based on the impact of a disability should contact one of the instructors privately to discuss specific needs. The Office of Disability Services (ODS) is relied upon for assistance in verifying the need for accommodations and developing accommodation strategies. Please contact the Office for Disability Services at 614-292-3307 (V) or 614-292-0901 (TDD) in room 150 Pomerene Hall to coordinate reasonable accommodations; http://www.ods.ohio-state.edu/. Students utilizing the ODS will be expected to follow Americans with Disabilities Act Guidelines for access to technology.

Grievances and Solving Problems - According to University Policies, available from the Division of Student Affairs, if you have a problem with this course, you should seek to resolve a grievance concerning a grade or academic practice by speaking first with the instructor or professor. Then, if necessary, with the Chairperson of the Department of Human Sciences, the Dean of the College of Education and Human Ecology, and the University Provost, in that order. Specific procedures are outlined in Faculty Rule 3335-7-23, which is available from the Office of Student Life, 208 Ohio Union. Grievances against graduate, research, and teaching assistants should be submitted first to the supervising instructor, then to the Chairperson of the Department of Human Sciences.

Statement on Diversity – The College of Education and Human Ecology affirms the importance and value of diversity in the student body. Our programs and curricula reflect our multicultural society and global economy and seek to provide opportunities for students to learn more about persons who are different from them. Discrimination against any individual based upon protected status, which is defined as age, color, disability, gender identity or expression, national origin, race, religion, sex, sexual orientation, or veteran status is prohibited.